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Breather scattering by impurities in the sine-Gordon model

Fei Zhang
Department of Computational Science, Faculty of Science, National University of Singapore, Singapore 119260

~Received 11 November 1997; revised manuscript received 31 March 1998!

We present results on breather-impurity scattering in the sine-Gordon model. We show in detail how the
outcome of the scattering depends on the breather’s initial velocity, internal oscillation frequency, and phase.
In particular, for an attractive impurity a breather can either be trapped by the impurity, pass the impurity, be
totally reflected, or break into a kink-antikink pair. For a repulsive impurity, a high-frequency breather behaves
like a rigid particle and the scattering result is mainly determined by the breather’s initial velocity; the
scattering of a low-frequency breather, however, depends on both the breather’s initial velocity and phase~it
can either pass the impurity or be reflected for a fixed initial velocity but different phases!. We demonstrate
clearly that the existence of these complex and interesting phenomena is due to the interplay between the
breather’s internal and its translational degrees of freedom, which become strongly coupled when the breather
is near the impurity region.@S1063-651X~98!02908-0#

PACS number~s!: 03.40.Kf, 63.50.1x, 66.90.1r
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I. INTRODUCTION

Nonlinear wave~soliton! propagation through inhomoge
neous and disordered media is an important area of cur
research. In particular, the issue how the steady-state mo
of solitons can be qualitatively modified by the presence
impurity perturbations is of widespread interest@1–12#

Due to its practical application and analytical tractabili
the sine-Gordon~SG! model has been serving as a paradig
for studying solitons behavior under perturbations. Ma
early analytical studies were based on inverse-scattering
turbation theory@3–7#. This theory is a bit involved and no
easily accessible, thus other simpler methods have also
developed@8,9#. In particular, recently Mann@9# has devel-
oped a systematic perturbation theory for SG solitons w
out the use of inverse-scattering methods. We note that w
these analytical approaches can often provide useful insig
they generally cannot give a detailed and accurate pic
about soliton dynamics under perturbations. In this situat
direct numerical simulation of the full problem~described by
a partial differential equation! is a powerful alternative
method for studying the soliton dynamics. In particular,
can be used to check the analytical results and to re
different phenomena@10,11#.

The problem of breather-impurity interaction in the S
model was briefly studied in Refs.@6,8# by using inverse-
scattering perturbation theory and the collective-coordin
approach. However, due to the limitation of their analytic
approaches, previous researchers could obtain only a s
fraction of the overall picture of breather-impurity intera
tion dynamics. Many interesting phenomena were miss
The objective of the present paper is to show that
breather-impurity interactions exhibitmuch more complex
and striking dynamics than previously indicated. We demon-
strate that the breather’s internal and translational degree
freedom become strongly coupled when it is near the im
rity and such a coupling makes it possible to transfer a
nificant amount of energy between the breather’s inter
oscillation and its translational motion; as a result, t
breather’s velocity and frequency can be changed drastic
PRE 581063-651X/98/58~2!/2558~6!/$15.00
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after the scattering. In the case of an attractive impur
there are four types of scattering outcome: breather~i! pass-
ing, ~ii ! trapping, ~iii ! reflection, and~iv! breaking into a
kink-antikink paireven when the breather’s initial energy
less than 16~double the energy of a kink at rest!. In the case
of repulsive impurity, a low-frequency breather may eith
pass or be reflected by the impurity, depending on both
breather’s velocity and internal phase; the scattering o
high-frequency breather depends mainly on the breath
initial velocity and is not sensitive to its initial phase. The
results are obtained through direct numerical simulations
the perturbed SG system and they can be understood with
help of a simple collective-coordinate approach.

II. COLLECTIVE-COORDINATE ANALYSIS

We consider the perturbed SG model

f tt2fxx1@11eU~x!#sin f50, ~1!

whereeU(x) represents a local impurity. Such a model c
be used to describe many physical systems including l
Josephson junctions with microshunts and microresist
See, e.g., Refs.@3–13#. The unperturbed SG equation has
breather solution@14#

fB~x,t !54 tan215 tan m

sinFq1~ t !2
Vx cosm

A12V2 G
coshFx sin m2q2~ t !

A12V2 G 6 ,

~2!

which is characterized by two pairs of action-angle-ty
canonical variables: (p15Mm,q1) and (p25MV/
A12V2,q2), whereM516 andV is the breather’s velocity.

To analyze breather-impurity interactions one can us
collective-coordinate approach, assuming that the major
fect of the interactions is a change of the breather’s par
eters. Then the perturbed Hamiltonian is~see Refs.@6,8#!
2558 © 1998 The American Physical Society
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H[H~p1 ,p2 ,q1 ,q2!5HB1H1 , ~3!

where HB corresponds to the unperturbed Hamiltonian~or
energy! for the breather

HB5AM21p2
2sin

p1

M
~4!

and

H158eF tan~p1 /M !sinq1cosh@q2A11~p2 /M !2#

tan2~p1 /M !sin2q11cosh2@q2A11~p2 /M !2#
G 2

.

~5!

@Here the localized impurity is represented by a delta fu
tion U(x)5d(x).#

In order to understand the qualitative effect of the pert
bation, one can calculate the average ofH1 over a period of
the breather’s internal oscillation@6#

^H1&54e tan2S p1

M D cosh@q2A11~p2 /M !2#H tan2S p1

M D
1cosh2@q2A11~p2 /M !2#J 23/2

. ~6!

Therefore, for a given breather’s velocity~or momentump2!,
the average potential depends on the breather’s position
frequencyV5cos(p1 /M). In particular, there exists a critica
breather frequencyVc51/) such that the shape of the a
erage potential is qualitatively different for the case ofV
,Vc and the case ofV.Vc ~see Fig. 1!. Moreover, if e
,0, then the impurity can create an attractive poten
~single or double well! to a breather and thus a high-veloci
breather will be able to pass the impurity, but a low-veloc
breather may be trapped due to radiative losses of its tr
lational energy during the scattering. Ife.0, then the impu-
rity is purely repulsive to a high-frequency breather (V
.Vc), so that a low-velocity breather will be reflected b
the impurity and a high-velocity breather will pass. A low

FIG. 1. Average Hamiltonian̂H1& vs the breather’s position
coordinateq2 . Solid lines, attractive impuritye520.2; dashed
lines, repulsive impuritye50.2. The breather’s frequencies are~a!
V50.7.Vc and ~b! V50.2,Vc .
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frequency breather (V,Vc), on the other hand, experience
a metastable state in the average potential so that it ma
trapped at the impurity. These results were also indicate
Refs. @6,8#. In the following we will use numerical simula
tions to reveal many additional effects that are far more
teresting.

Note that the canonical equations of motion derived fro
Eq. ~3! are highly singular whenm5p1 /M'6p/2 ~because
of zero denominators!, i.e., when a breather breaks into
kink-antikink pair. The presence of such singular pha
points can cause a ‘‘blowup’’ in numerical simulations. T
overcome this difficulty we make a change of variablep̄1
5tan(p1 /M) and transform the Hamiltonian equations in
the system of ordinary differential equations

dp̄1

dt
528eW sin~2q1!cosh2~gq2! p̄1

2~11 p̄1
2!/M , ~7!

dq1

dt
5g/A11 p̄1

21eW sin2~q1!cosh2~gq2! p̄1~11 p̄1
2!,

~8!

dp2

dt
58egWp̄1

2sin2~q1!sinh~2gq2!, ~9!

dq2

dt 5
p̄1p2

MgA11 p̄1
2

2
eWp̄1

2p2q2sin2~q1!sinh~2gq2!

2Mg ,

~10!

where

g5A11~p2 /M !2

and

W5@cosh2~gq2!2 p̄1
2sin2~q1!#@cosh2~gq2!

1 p̄1
2sin2~q1!#23.

We supply the initial values for (p̄1 ,q1 ,p2 ,q2) in accor-
dance with a breather with a given initial velocityV, fre-
quencyV, fixed positionX05220, and 30 different initial
phases ranging from 0 top, i.e., q1(0)5kp/30, k
51,2, . . . ,30.@Note that the HamiltonianH1 is p periodic
in q1 ; thus we only need to consider the initial phase
~0,p!.# The simulation results are summarized as follows

In the case of an attractive impurity (e,0), we takee
520.5. In the simulations we find that for a given initia
velocity and frequency, the outcome of breather scatter
depends strongly on the the breather’s initial phaseq1(0). In
particular, a low-velocity breather may either pass the im
rity or be reflected by the impurity. In this case the fin
velocity ~and thus frequency! of the breather may be altere
significantly ~see Fig. 2!. In some cases, we observe lon
time trapping of the breather by the impurity potential, a
though such trapping might be transient~see Fig. 3!.

Another striking effect of the scattering is that a low
frequency breather may break into a kink-antikink (KK̄) pair
even when its energy is less than 16. This is evidenced by the
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2560 PRE 58FEI ZHANG
fact that the variablep̄1 becomes ‘‘infinite’’ ~the breather’s
frequency approaches to zero! and the breather ansatz~2!

clearly becomes aKK̄ pair ~Fig. 4!.
To understand why a breather can break into aKK̄ pair

even when its energy is less than the minimum energy o
unboundedKK̄ pair, we note that the attractive impurity ca
create an effective potential well of depth 2ueu to a kink ~or
antikink! @10,11#. Therefore, from an energetics point
view, the critical condition for a breather to be converted in
a KK̄ pair is (e,0)

EB[
16A12V2

A12V2
51612e. ~11!

Note that the left-hand side of Eq.~11! is just the energy of
the breather. Solving this equation, we can get a critical
locity Vc5Vc(V,e). For example, ate520.5 and V
50.4, Eq.~11! gives Vc'0.2104. Indeed, we observe th

FIG. 2. Final velocity of the breather vs its initial phase, for t
case of an attractive impuritye520.5. The breather’s frequencie
and velocities are~a! V50.6, V50.05 ~circles!, V50.1 ~squares!,
and V50.2 ~asterisks! and ~b! V50.4, V50.1 ~circles!, V50.2
~squares!, andV50.3 ~asterisks!. Note that the four triangles in~b!
indicate the breaking of breather into a kink-antikink pair forV
50.3. See the text.

FIG. 3. Breather location vs time, obtained by the collect
coordinate approach for the impurity parametere520.5. The
breather frequency and velocity areV50.5 andV50.1, respec-
tively, and its initial phases areq1(0)5kp/30, with k521, 26, 29,
24, 25, and 30 for curves 1, 2, 3, 4, 5, and 6, respectively.
n

-

the breather with initial velocityV50.3 is broken into aKK̄
pair for the initial phasesq1(0)5kp/30, k52,3,4,5 @see
Figs. 2~b! and 4#.

In the case of a repulsive impurity (e.0), the scattering
of a high-frequency breather (V.1/)) depends very little
on the initial phase. The breather behaves like a rigid part
of mass 16A12V2 interacting with a repulsive potentia
Whether or not it can pass the impurity depends only
whether it has enough energy to overcome the potential
rier. Using an energy argument, we find that the critical v
locity of the breather passing can be estimated asVc

5A0.5eVA12V2. For example, ate50.1 and V50.9,
this equation givesVc50.140. In numerical simulations, w
observe that a breather will always pass the impurity forV
>0.1386, but it will be reflected forV<0.1385. In both
cases, the final breather’s frequency and velocity~absolute
value! are virtually unchanged.

For a low-frequency breather (VB,1/)), the scattering
is more complicated because of the existence of themeta-
stablestate in the average potential^H1&. For a given impu-
rity strengthe, there exists a critical velocityVc1 such that if
the breather’s incoming velocity is smaller thanVc1 then it
will be reflected~for all phases!. Again using an energy ar

gument we findVc1'323/4Ae/A12V2. Furthermore, there
exists another critical velocityVc2 (.Vc1), above which the
breather will always pass the impurity.

Interestingly, for the breather velocity in the interv
@Vc1 ,Vc2#, there are possibilities of passing, reflection, a
even long-time trapping into the metastable state. For
ample, ate50.1 andVB50.2, we find in numerical simula
tions that if the breather’s initial velocity is smaller tha
Vc150.137, then it will always be reflected; if it is large
thanVc250.158, then it will always pass the impurity. If th
breather’s initial velocity is located in the interval@0.137,
0.158#, then it may either pass the impurity or be reflecte

FIG. 4. Collective-coordinate results (e520.5), showing that
~a! a breather frequency goes to zero and~b! it breaks into a kink-
antikink pair. The field configuration in~b! is obtained by substitut-
ing the collective coordinate results into the ansatz~2!. The breather
initial conditions areV50.4, V50.3, andq1(0)5p/10.
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depending on the breather’sinitial phase~Fig. 5!.
For a repulsive impurity, a low-frequency breather m

be broken into a kink-antikink pair only when its initial en
ergy isgreater than 16~in contrast to the case of an attra
tive impurity!. For example, ate50.1 and V50.1, it is
found that the breather will always be reflected if its init
velocity V<0.1; otherwise (V>0.11), it can break into
kink-antikink pair for some initial phases.

III. DIRECT NUMERICAL SIMULATION RESULTS

We carry out detailed numerical simulations of the p
turbed SG system~1! in the spatial interval@2100,100# with
free boundary conditions. Unlike in the previous wor
@10,11# where thed impurity is approximated by a discon
tinuous step function, here we use a continuous function

eU~x!5
a

cosh2~x/b!
~12!

to represent the impurity of widthb. Note that whenb goes
to zero the right-hand side of Eq.~12! approaches 2abd(x).
A simple second-order central difference scheme is use
discretize the equation in space with step sizeDx50.02 and
then a fourth-order symplectic method@15# is used to inte-
grate the resulting discrete Hamiltonian model in time w
temporal step sizeDt50.01.

The initial conditions are taken as an exact breather~2!
with a fixed initial positionX05220 @q2(0)5X0 sin(m)#,
an initial frequencyV5cos(m) and velocityV, and 30dif-
ferent phases q1(0)5kp/30, k51,2, . . . ,30.

First, we consider avery localizedattractive impurity with
the parametersb50.04 a526.25. This is close to ad im-
purity with strengthe52ab520.5. In numerical simula-
tions, we observe that a low-frequency breather can ei
pass, be reflected, be trapped, or break into aKK̄ pair, de-
pending on its initial frequency, velocity, and phase. For
stance, taking the breather parameters asV50.4, V50.35,
andq1(0)5kp/30, we find that it is trapped by the impurit
for the initial phase withk51, breaks into aKK̄ pair for k
52 and 3, is reflected fork54, and passes the impurity fo
initial phases with 5<k<30. See Fig. 6. In the cases o
passing and reflection, the breather’s final velocity and
quency depend strongly on the breather’s initial phase
they can be changed a lot from their initial values, just as
been predicted in the collective-coordinate approach.

FIG. 5. Final velocity of a breather with initial frequencyV
50.2 vs its initial phase, for the case of a repulsive impuritye
50.1. The breather’s initial velocities areV50.136 ~triangles!, V
50.140~asterisks!, andV50.158~circles!.
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For a breather with an intermediate frequency, we fi
that it can always pass the impurity if its initial velocity
large enough; but it may either pass, be trapped, or be
flected if its initial velocity is low. For example, taking th
breather frequency asV50.6, we find that it can always
pass the impurity ifV>0.1. However, at the initial velocity
V50.05, the breather may pass the impurity for most init
phases, while it can be either trapped or reflected for so
other phases~Fig. 7!.

We note that the attractive impurity can support a loc
ized impurity mode, which can be considered as asmall-
amplitudebreather trapped by the impurity. In linear limi
the frequency of the impurity mode isv im5A12e2/4. ~See
Refs. @10,11#.! When the scattering breather’s frequency
close to this impurity mode’s frequency, the scattering c
strongly excite the impurity mode. In this case, t
collective-coordinate approach is no longer valid becaus
does not take into account the impurity mode. In the dir
numerical simulations we study the scattering of a breat
with frequencyV50.9 ~which is close to the impurity mode
frequency 0.968! and we find that, no matter what the pha
is, the breather will be trapped if its initial velocity is sma
(<0.25) and it will pass the impurity if its initial velocity is
sufficiently large. A lot of radiation is generated due to t
breather-impurity interactions~see Fig. 8! and the breather
cannot be reflected nor break into aKK̄ pair.

FIG. 6. Evolution of the fieldf(x,t) for a breather with initial
frequencyV50.4, velocity V50.35, and different initial phases
scattered by an attractive impurity. The breather~a! passes the im-
purity for phaseq1(0)5p/2, ~b! is reflected forq1(0)52p/15, ~c!
is trapped forq1(0)5p/30, and~d! decays into a kink-antikink pair
for q1(0)5p/15. ~The antikink is trapped at the impurity and th
kink moves forward.!

FIG. 7. Evolution of the fieldf(x,t) for a breather with initial
frequencyV50.6, velocity V50.05, and different initial phases
scattered by an attractive impurity. The breather~a! passes the im-
purity for phaseq1(0)50, ~b! is reflected forq1(0)59p/10, and
~c! is trapped forq1(0)514p/15.
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In the case of repulsive impurity, we takea51.25 and
b50.04 @eU(x)'2abd(x)50.1d(x)#. For a high-
frequency breather, we observe that there exists a cri
velocity Vc such that for any initial phase, the breather c
pass the impurity if its initial velocity exceedsVc and it will
be reflected if its initial velocity is less thanVc . As an ex-
ample, we takeV50.8. We observe in numerical simula
tions that the breather always passes if its initial velocity
greater than 0.153 and it will be reflected otherwise. This
in good agreement with collective-coordinate predicti
~Sec. II!, which givesVc50.155.

For a low-frequency breather scattering, the results a
turn out to be in good agreement with the collective coor
nate approach. We simulate a breather withV50.2 and find
that for any initial phase if the breather’s initial velocity
less than 0.137 it will be reflected; if its initial velocity i
greater than 0.148 it will pass. However, when the breath
initial velocity is in between 0.137 and 0.148, the scatter
results will depend sensitively on the breather’s initial pha

FIG. 8. Evolution of the fieldf(x,t) for a breather with initial
frequencyV50.9, scattered by an attractive impurity. The breath
~a! is trapped at the impurity for initial velocityV50.2 andq1(0)
5p/3 and~b! passes atV50.4 andq1(0)5p/3.
al
n

s
s

o
-
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g
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In particular, for a given initial velocity~e.g.,V50.14!, the
breather can pass the impurity for some phases and it ca
reflected for some other phases~Fig. 9!. Moreover, if the
breather’s initial velocity is high enough (>0.4), then it can
break into aKK̄ pair. See Fig. 9~c!. We have also studied
breather scattering by a large-size impurity~e.g.,b52! and
found that the results are similar to those obtained above
a d-like impurity.

IV. CONCLUSIONS

Table I encapsulates the major effects observed in soli
impurity scattering in the sine-Gordon model. We would li
to emphasize that in contrast to the resonant kink-impu
interactions where the impurity mode plays an important r
@10,11#, the rich dynamics in breather scattering is due to

r
FIG. 9. Evolution of the fieldf(x,t) for a breather with fre-

quencyV50.2, scattered by a repulsive impurity. The breather~a!
passes forV50.14 and q1(0)516p/30, ~b! is reflected forV
50.14 andq1(0)517p/30, and~c! breaks into a kink-antikink pair
for V50.4 andq1(0)5p/6.
n

TABLE I. Summary of soliton-impurity interactions in the sine-Gordon model.

Impurity type Attractive impurity Repulsive impurity

kink resonance structuresa no resonance structuresa

low-frequency either pass or trapb either pass or reflection depending o
breather decay intoKK̄ pair for Eb@16c only velocityb

reflectiond both velocity and phased

decay intoKK̄ pair for Eb,16d decay intoKK̄ pair for Eb@16c

high-frequency either pass or trapb either pass or reflectionb

breather excitation of impurity moded

aReferences@10,11#
bReferences@6,8#.
cReference@6#.
dPresent results.
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interplay between the breather’s own~internal oscillation and
translation! degrees of freedom. When near the impurity
breather experiences an effective potential and its degree
freedom become strongly coupled. As a result, it may eit
pass the impurity, be reflected, be trapped, or even break
a kink-antikink (KK̄) pair. The outcome of scattering de
pends not only on the breather’s velocity and frequency,
also on the breather’s initialphases. Most strikingly, in the
case of an attractive impurity, the decay of a low-frequen
breather into aKK̄ pair may occur even when the breathe
-
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r
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y

initial energy Eb is less than 16. We believe that simila
phenomena can be observed in the SG model with o
types of perturbation.
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