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Breather scattering by impurities in the sine-Gordon model
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We present results on breather-impurity scattering in the sine-Gordon model. We show in detail how the
outcome of the scattering depends on the breather’s initial velocity, internal oscillation frequency, and phase.
In particular, for an attractive impurity a breather can either be trapped by the impurity, pass the impurity, be
totally reflected or break into a kink-antikink pair. For a repulsive impurity, a high-frequency breather behaves
like a rigid particle and the scattering result is mainly determined by the breather’s initial velocity; the
scattering of a low-frequency breather, however, depends on both the breather’s initial velocity an@tphase
can either pass the impurity or be reflected for a fixed initial velocity but different phasesdemonstrate
clearly that the existence of these complex and interesting phenomena is due to the interplay between the
breather’s internal and its translational degrees of freedom, which become strongly coupled when the breather
is near the impurity regiorf.$1063-651X98)02908-(

PACS numbsfs): 03.40.Kf, 63.50+x, 66.90+r

I. INTRODUCTION after the scattering. In the case of an attractive impurity,
there are four types of scattering outcome: breathgrass-
Nonlinear wave(solitor) propagation through inhomoge- ing, (ii) trapping, (iii) reflection, and(iv) breaking into a
neous and disordered media is an important area of currekink-antikink paireven when the breather’s initial energy is
research. In particular, the issue how the steady-state motid@ss than 1Gdouble the energy of a kink at resin the case
of solitons can be qualitatively modified by the presence off repulsive impurity, a low-frequency breather may either
impurity perturbations is of widespread intert12] pass or be reflected by the impurity, depending on both the
Due to its practical application and analytical tractability, Preather’s velocity and internal phase; the scattering of a
the sine-GordortSG) model has been serving as a paradigmhigh-frequency breather depends mainly on the breather’s
for studying solitons behavior under perturbations. Manyinitial velocity and is not sensitive to its initial phase. These
early analytical studies were based on inverse-scattering pefesults are obtained through direct numerical simulations of
turbation theory3—7]. This theory is a bit involved and not the perturbed SG system and they can be understood with the
easily accessible, thus other simpler methods have also be8glp of a simple collective-coordinate approach.
developed8,9]. In particular, recently Manfi9] has devel-
oped a systematic perturbation theory for SG solitons with- Il. COLLECTIVE-COORDINATE ANALYSIS
out the use of inverse-scattering methods. We note that while
these analytical approaches can often provide useful insights,
they generally cannot give a detailed and accurate picture .
about soliton dynamics under perturbations. In this situation, bu— PyxT [ 1+ €U(x)]sin ¢=0, (D)
direct numerical simulation of the full probletdescribed by
a partial differential equatignis a powerful alternative
method for studying the soliton dynamics. In particular, it
can be used to check the analytical results and to reve
different phenomengl0,11].
The problem of breather-impurity interaction in the SG

We consider the perturbed SG model

where eU(x) represents a local impurity. Such a model can
be used to describe many physical systems including long
%Psephson junctions with microshunts and microresistors.

ee, e.g., Ref§3-13. The unperturbed SG equation has a
breather solutioh14]

model was briefly studied in Ref§6,8] by using inverse-

scattering perturbation theory and the collective-coordinate sir{ql(t _ Vxcospu
approach. However, due to the limitation of their analytical J1—V?2
approaches, previous researchers could obtain only a small @s(x,t)=4tan ¢ tanu ;

fraction of the overall picture of breather-impurity interac- c w
tion dynamics. Many interesting phenomena were missing. V1-V?

The objective of the present paper is to show that the 2
breather-impurity interactions exhibihuch more complex

and striking dynamics than previously indicatétle demon-  which is characterized by two pairs of action-angle-type
strate that the breather’s internal and translational degrees oinonical  variables: p;=Mu,q;) and (@E,=MV/
freedom become strongly coupled when it is near the impu«/l—Vz,qz), whereM =16 andV is the breather’s velocity.
rity and such a coupling makes it possible to transfer a sig- To analyze breather-impurity interactions one can use a
nificant amount of energy between the breather’s internatollective-coordinate approach, assuming that the major ef-
oscillation and its translational motion; as a result, thefect of the interactions is a change of the breather’s param-
breather’s velocity and frequency can be changed drasticallgters. Then the perturbed Hamiltonian($ee Refs[6,8])
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0.4 T T T frequency breather}<(}.), on the other hand, experiences
n (a) a metastable state in the average potential so that it may be
I\ . . . . .
| [ trapped at the impurity. These results were also indicated in
X 00 <N Refs.[6,8]. In the following we will use numerical simula-
v tions to reveal many additional effects that are far more in-
\/ teresting.
o4 | ) ) ) Note that the canonical equations of motion derived from
0.4 : . : Eq. (3) are highly singular whep.=p, /M~ = 77/2 (because
- A A (b) of zero denominatojsi.e., when a breather breaks into a
AN kink-antikink pair. The presence of such singular phase
A oo I '\ points can cause a “blowup” in numerical simulationj. To
v overcome this difficulty we make a change of variable
=tan(,/M) and transform the Hamiltonian equations into
04 , ) , the system of ordinary differential equations
-20  -10 0 10 20
" PL_ g ew sin(2ay)c0sR(yan P(1+PDIM,  (7)
FIG. 1. Average HamiltoniagH,) vs the breather's position dt ! 2 ! ’

coordinateq,. Solid lines, attractive impurite=—0.2; dashed

lines, repulsive impuritye=0.2. The breather’s frequencies da do; . —
0=0.7>0Q, and(b) 0 =0.2<Q,. gp = Y/ N1+ pi+ eW sird(qy)costi(ya,)pa(1+pd),
8
H=H(p1,p2,d1,d2) =Hg+Hy, 3
d
where Hg corresponds to the unperturbed Hamiltoniam %zSeywﬁsinz(ql)sinr(quz), 9
energy for the breather
_ —, . )
1 dg, P1P2 €W p;p,Q,sin(qy)sinh(2yay)
Hg= M2+ p2sin — 4 = - ;
B P2SIn (4) dt M)’\/mf 2My
10
and (10
where
g aPs/M)sinaycostiaz I+ (p/M)%] |
- . _ 2
Y7 tark(py /M) sirPgy + cosR[ guV I+ (pa/M)2] y=\1+(p2/M)
5
® and
[Here the localized impurity is represented by a delta func-
tion U(x) = (x).] W=[cost(yq,) — pisin(a) ] cost( yay)
In order to understand the qualitative effect of the pertur-
bation, one can calculate the averagdgfover a period of +6215in2(Q1)]_3-

the breather’s internal oscillatidi6] _

We supply the initial values forg(,q:,p»,d,) in accor-
&) dance with a breather with a given initial velocity, fre-
M quency!(}, fixed positionXy,=—20, and 30 different initial
_ap phases ranging from 0 tom i.e., ¢,(0)=k#/30, k
+cosl?[q2\/m]) _ (6) _=1,2, ...,30.[Note that the Hamllt_omarh-l1 is periodic _

in g;; thus we only need to consider the initial phase in

(0,7).] The simulation results are summarized as follows.
In the case of an attractive impurite€0), we takee
—0.5. In the simulations we find that for a given initial
velocity and frequency, the outcome of breather scattering
depends strongly on the the breather’s initial phag®). In

P

(Hi)=4e tar? N

cosr[qz\/lJr(pZ/M)z][tan2

Therefore, for a given breather’s velocigr momentunps,),
the average potential depends on the breather’s position and
frequencyQ) = cosfp,/M). In particular, there exists a critical
breather frequenc§).=1/3 such that the shape of the av-

erage potential is qualitatively different for the case(f : : . .
<0, and the case of)>0Q, (see Fig. 1 Moreover, if e particular, a low-velocity breather may either pass the impu-
Cc Cc . ’

<0, then the impurity can create an attractive potentiafity or be reflected by the impurity. In this case the final
(single or double wellto a breather and thus a high-velocity Y&!0City (and thus frequengyof the breather may be altered
breather will be able to pass the impurity, but a low-velocity Significantly (see Fig. 2 In some cases, we observe long-
breather may be trapped due to radiative losses of its trandMe€ trapping of the breather by the impurity potential, al-
lational energy during the scattering.df>0, then the impu- though such trapping might be transi¢see Fig. 3

rity is purely repulsive to a high-frequency breathe® ( Another striking effect of the scattering is thEt a low-
>Q,), so that a low-velocity breather will be reflected by frequency breather may break into a kink-antikit&() pair
the impurity and a high-velocity breather will pass. A low- even when its energy is less than T8is is evidenced by the
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FIG. 2. Final velocity of the breather vs its initial phase, for the

case of an attractive impurity= —0.5. The breather’s frequencies
and velocities aréa) (1 =0.6, V=0.05 (circleg, V=0.1 (squarek
and V=0.2 (asterisk$ and (b) 2=0.4, V=0.1 (circles, V=0.2
(squares andV=0.3 (asterisks Note that the four triangles itb)
indicate the breaking of breather into a kink-antikink pair Tor
=0.3. See the text.

fact that the variablqz_)l becomes “infinite” (the breather’s
frequency approaches to zg¢rand the breather ansat2)

clearly becomes &K pair (Fig. 4).
To understand why a breather can break intidia pair

FIG. 4. Collective-coordinate resultg€ —0.5), showing that
(a) a breather frequency goes to zero dhgit breaks into a kink-
antikink pair. The field configuration itb) is obtained by substitut-
ing the collective coordinate results into the ang2jzThe breather
initial conditions areQ)=0.4,V=0.3, andq;(0)= #/10.

the breather with initial velocity’= 0.3 is broken into &K
pair for the initial phasesy;(0)=k#/30, k=2,3,4,5[see
Figs. 2b) and 4.

In the case of a repulsive impuritg$0), the scattering

even when its energy is less than the minimum energy of aof a high-frequency breathe€)>1//3) depends very little

unbounded K pair, we note that the attractive impurity can O the initial phase. _The bre_ather_behaves Iik(_a arigid pgrticle
create an effective potential well of depthd2to a kink (or ~ Of mass 1§1—Q“ interacting with a repulsive potential.
antikink) [10,11. Therefore, from an energetics point of Whether or not it can pass the impurity depends only on

view, the critical condition for a breather to be converted intoWhether it has enough energy to overcome the potential bar-
— rier. Using an energy argument, we find that the critical ve-
a KK pair is (e<0)

locity of the breather passing can be estimated \as

=V0.5eQV1- Q2 For example, ate=0.1 andQ=0.9,

16y1- Q7 . . ) . . .
Eg= ——= 16+ 2e. (11) this equation give¥.=0.140. In numerical simulations, we
Vi=V observe that a breather will always pass the impurity\for

=0.1386, but it will be reflected fov=<0.1385. In both
Note that the left-hand side of E(L1) is just the energy of cases, the final breather’'s frequency and veloGysolute
the breather. Solving this equation, we can get a critical vevalue are virtually unchanged.
locity V.=V.(Q,e). For example, ate=—0.5 and () For a low-frequency breathef)g<1/#/3), the scattering
=0.4, Eq.(11) givesV.~0.2104. Indeed, we observe that is more complicated because of the existence ofnieta-
stablestate in the average potentid ;). For a given impu-
rity strengthe, there exists a critical velocity.; such that if
the breather’s incoming velocity is smaller thep, then it
will be reflected(for all phases Again using an energy ar-

gument we findV;~3 ¥4\ e/\/1— Q2. Furthermore, there
exists another critical velocity, (>V,;), above which the
breather will always pass the impurity.

Interestingly, for the breather velocity in the interval
[Ve1.Veol, there are possibilities of passing, reflection, and
even long-time trapping into the metastable state. For ex-
ample, ate=0.1 andQ)z=0.2, we find in numerical simula-

FIG. 3. Breather location vs time, obtained by the collectiveiONs that if the breather’s initial velocity is smaller than
coordinate approach for the impurity parameter —0.5. The Vc1=0.137, then it will always be reflected; if it is larger
breather frequency and velocity afé=0.5 andV=0.1, respec- thanV:,=0.158, then it will always pass the impurity. If the
tively, and its initial phases amp (0)=k=/30, withk=21, 26, 29,  breather’s initial velocity is located in the intervgd.137,
24, 25, and 30 for curves 1, 2, 3, 4, 5, and 6, respectively. 0.158, then it may either pass the impurity or be reflected,

30 T T T

Breather position

-30 1 1

1
0 1000 2000 3000

Time
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FIG. 5. Final velocity of a breather with initial frequend€y
=0.2 vs its initial phase, for the case of a repulsive impugty
=0.1. The breather’s initial velocities aké=0.136 (triangles, V
=0.140(asterisky andV=0.158(circles.

depending on the breatheiiisitial phase(Fig. 5).
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FIG. 6. Evolution of the fieldp(x,t) for a breather with initial

For a repulsive impurity, a low-frequency breather mayfrequency(Q=0.4, velocityV=0.35, and different initial phases,
be broken into a kink-antikink pair only when its initial en- scattered by an attractive impurity. The breatf@rpasses the im-
ergy isgreater than 16(in contrast to the case of an attrac- Purity for phaseq,(0)=/2, (b) is reflected fom, (0) =2/15, (c)

tive impurity). For example, atte=0.1 andQ=0.1, it is
found that the breather will always be reflected if its initial
velocity V=0.1; otherwise ¥=0.11), it can break into
kink-antikink pair for some initial phases.

Ill. DIRECT NUMERICAL SIMULATION RESULTS

We carry out detailed numerical simulations of the per-

turbed SG systertl) in the spatial interval —100,10Q with
free boundary conditions. Unlike in the previous works
[10,11] where theé impurity is approximated by a discon-
tinuous step function, here we use a continuous function

eU(x)= (12

o
cosH(x/B)

to represent the impurity of widtj3. Note that whern3 goes
to zero the right-hand side of E(L2) approaches 235(x).

is trapped foig,(0)= #/30, and(d) decays into a kink-antikink pair
for q1(0)==/15. (The antikink is trapped at the impurity and the
kink moves forward.

For a breather with an intermediate frequency, we find
that it can always pass the impurity if its initial velocity is
large enough; but it may either pass, be trapped, or be re-
flected if its initial velocity is low. For example, taking the
breather frequency aQ=0.6, we find that it can always
pass the impurity iV=0.1. However, at the initial velocity
V=0.05, the breather may pass the impurity for most initial
phases, while it can be either trapped or reflected for some
other phasesFig. 7).

We note that the attractive impurity can support a local-
ized impurity mode, which can be considered asnaall-
amplitudebreather trapped by the impurity. In linear limit,
the frequency of the impurity mode is;,,= \/1— €7/4. (See
Refs.[10,11].) When the scattering breather’s frequency is

A simple second-order central difference scheme is used t9yse to this impurity mode’s frequency, the scattering can

discretize the equation in space with step gize=0.02 and
then a fourth-order symplectic meth¢dl5] is used to inte-
grate the resulting discrete Hamiltonian model in time with
temporal step sizat=0.01.

The initial conditions are taken as an exact breater
with a fixed initial positionXy=—20 [q,(0)=Xq sin(w)],
an initial frequency() =cos() and velocityV, and 30dif-
ferent phases {0)=k=/30,k=1,2,...,30.

First, we consider &ery localizedattractive impurity with
the parameterg=0.04 «= —6.25. This is close to & im-
purity with strengthe=2a8=—0.5. In numerical simula-

tions, we observe that a low-frequency breather can either

pass, be reflected, be trapped, or break intdka pair, de-
pending on its initial frequency, velocity, and phase. For in-
stance, taking the breather parameter€las0.4, V=0.35,
andq,(0)=k=/30, we find that it is trapped by the impurity
for the initial phase wittk=1, breaks into &K pair for k

=2 and 3, is reflected fok=4, and passes the impurity for
initial phases with 5k=<30. See Fig. 6. In the cases of

strongly excite the impurity mode. In this case, the
collective-coordinate approach is no longer valid because it
does not take into account the impurity mode. In the direct
numerical simulations we study the scattering of a breather
with frequency() = 0.9 (which is close to the impurity mode
frequency 0.968and we find that, no matter what the phase
is, the breather will be trapped if its initial velocity is small
(=<0.25) and it will pass the impurity if its initial velocity is
sufficiently large. A lot of radiation is generated due to the
breather-impurity interactionésee Fig. 8 and the breather

cannot be reflected nor break intdka pair.

2000

Time

0 50
X

0 50  100-100 -50 50  100-100 -50
X

-100 -50 ) 100
X

FIG. 7. Evolution of the fieldp(x,t) for a breather with initial

passing and reflection, the breather’s final velocity and frefrequencyQ=0.6, velocityV=0.05, and different initial phases,
quency depend strongly on the breather’s initial phase angcattered by an attractive impurity. The breatt@rpasses the im-
they can be changed a lot from their initial values, just as hagurity for phaseq;(0)=0, (b) is reflected forq,(0)=9#/10, and
been predicted in the collective-coordinate approach. (c) is trapped forg,(0)=14m/15.
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FIG. 8. Evolution of the fieldp(x,t) for a breather with initial -100 -50 0 50 100
frequency() =0.9, scattered by an attractive impurity. The breather X
(a) is trapped at the impurity for initial velocity=0.2 andqg,(0) FIG. 9. Evolution of the fieldg(x,t) for a breather with fre-
= /3 and(b) passes a¥=0.4 andq,(0)= /3. quencyQ =0.2, scattered by a repulsive impurity. The breaftagr

passes forV=0.14 andq;(0)=16#/30, (b) is reflected forV

In the case of repulsive impurity, we take=1.25 and  =0.14 andy;(0)=177/30, and(c) breaks into a kink-antikink pair
B=0.04 [eU(x)=2aB5(x)=0.18(x)]. For a high- forV=0.4 andq,(0)= /6.
frequency breather, we observe that there exists a critical
velocity V. such that for any initial phase, the breather canin particular, for a given initial velocitye.g.,V=0.14), the
pass the impurity if its initial velocity exceedg, and it will breather can pass the impurity for some phases and it can be
be reflected if its initial velocity is less thavi,. As an ex- reflected for some other phasésig. 9. Moreover, if the
ample, we take)=0.8. We observe in numerical simula- breather’s initial velocity is high enougl#0.4), then it can

tions that the breather always passes if its initial velocity ispreak into akK K pair. See Fig. @). We have also studied

greater than 0.153 and it will be reflected otherwise. This i&)rea’[her Scattering by a |arge_size |mpu(@glﬁz 2) and

in good agreement with collective-coordinate predictionfound that the results are similar to those obtained above for

(Sec. I), which givesV.=0.155. a &like impurity.
For a low-frequency breather scattering, the results also

turn out to be in good agreement with the collective coordi-

nate approach. We simulate a breather Wit 0.2 and find

that for any initial phase if the breather’s initial velocity is ~ Table | encapsulates the major effects observed in soliton-

less than 0.137 it will be reflected; if its initial velocity is impurity scattering in the sine-Gordon model. We would like

greater than 0.148 it will pass. However, when the breather'so emphasize that in contrast to the resonant kink-impurity

initial velocity is in between 0.137 and 0.148, the scatteringnteractions where the impurity mode plays an important role

results will depend sensitively on the breather’s initial phase[10,11], the rich dynamics in breather scattering is due to the

IV. CONCLUSIONS

TABLE I. Summary of soliton-impurity interactions in the sine-Gordon model.

Impurity type Attractive impurity Repulsive impurity
kink resonance structures no resonance structufes
low-frequency either pass or tfap either pass or reflection depending on
breather decay intokK pair for E,> 16° only velocity’

reflectiorf both velocity and phade

decay intoKK pair for E,,< 16 decay intoKK pair for E,> 16°
high-frequency either pass or tfap either pass or reflectin
breather excitation of impurity mofle

8Reference$10,11]
bReferencess, ).
‘Referencd6].
dPresent results.
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interplay between the breather’s ointernal oscillation and initial energy E;, is less than 16. We believe that similar
translation degrees of freedom. When near the impurity aphenomena can be observed in the SG model with other
breather experiences an effective potential and its degrees tfpes of perturbation.

freedom become strongly coupled. As a result, it may either

pass the impurity, be reflected, be trapped, or even break into

a kink-antikink (KK) pair. The outcome of scattering de- ACKNOWLEDGMENTS

pends not only on the breather’s velocity and frequency, but | thank Yuri Kivshar for useful discussions. This work
also on the breather's initiglhases Most strikingly, in the  was supported by Academic Research Grants Nos. 950601
case of an attractive impurity, the decay of a low-frequencyand 960689 and by the Lee Kuan Yew Endowment Fund in
breather into &K pair may occur even when the breather’'s the National University of Singapore.
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